일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
31 |
- Babel
- CentOS
- Redux
- SQL
- laravel
- docker
- python
- webpack
- rabbitmq
- 기초 수학
- mariadb
- AWS
- Backbone.js
- React
- Redis
- javascript
- phpredis
- nginx
- deep learning
- Switch
- Go
- 블레이드 템플릿
- php
- linux
- nodejs
- fastapi
- NCP
- Machine Learning
- For
- Node
- Today
- Total
목록2024/03/31 (3)
개발일기
고유값 고유값은 행렬의 계수가 행렬의 모든 고유값의 곱과 같다는 특징을 가지고 있다. import numpy as np A = np.array([[4, 5], [2, 6]]) lam, v = np.linalg.eig(A) # EigenValues, EigenVectors det = np.linalg.det(A) # Determinant print("EigenValues product: ", np.product(lam)) print("Determinant: ", det) """ EigenValues product: 14.0 Determinant: 14.000000000000004 """ A 행렬은 2차원 행렬이므로 고유값이 2개가 생성된다. 고유값을 모두 곱하고 행렬 계수와 비교하면 동일한 값이 나오는 것..
Determinant of a Matrix 행렬 판별식은 역행렬의 존재 여부를 판별해주는 식이다. 역행렬을 판별하기에 행렬 판별식은 정방 행렬로 이루어져 있다. 수식으로는 행렬 앞 뒤에 | 절대값 붙여 표시한다. $ A = \begin{bmatrix} a & b \\ c & d \\ \end{bmatrix}, |A|=ad - bc $ 로 표시하며 행렬 판별식으로 행렬의 계수를 구할 수 있으며 A행렬의 ad - bc 공식으로 구할 수 있다. import numpy as np A = np.array([[5, 1], [4, 3]]) print(np.linalg.det(A)) # det()메서드로 행렬식 계산 """ 11.000000000000002 """ 행렬 판별식을 역행렬의 존재 여부를 판별하기에 ad -..
고유벡터 어떤 벡터에 선형 변환이 일어났을 때, 벡터의 방향이 바뀌지 않고 변환 결과가 자기 자신의 상수배이며 0이 아닌 벡터를 고유벡터라 한다. 여기서 선형 변환이란 벡터의 크기 변화없이 돌리거나 뒤집거나 뒤트는 등 벡터를 변형시키는걸 의미한다. 왼쪽 그림을 오른쪽 방향으로 전단 변형하면 그래프는 위와 같이 변형된다. 높이는 유지하되 오른쪽 방면으로 찌그러진 모양의 그림이 나오게 된다. 흰색 벡터는 방향을 그대로 유지하지만 노란색과 초록색 벡터는 방향이 바뀐다. 위의 변형의 결과로 흰색 벡터는 고유 벡터가 된다. 만약 위 그림을 2배로 확대시키는 변형을 가하면 그림이 커진만큼 그래프의 선의 길이도 2배 증가한다. 기존 벡터의 크기가 5, 확대된 벡터의 크기가 10이라 가정했을 때, 확대된 벡터에서 기존..